

Lowell Regional Wastewater 451 First Street Boulevard Lowell, MA 01854 Attn: Tom Kawa

6/27/2018

Dear Mr. Kawa,

Enclosed please find the toxicological evaluation and chemical analyses report for the effluent received on June 4, 2018. This is your 2018 Stormwater bioassay report. Please call me at (401) 353-3420 if you have any questions.

Sincerely,

Michael McCallum Technical Laboratory Director

NEW ENGLAND TESTING LABORATORY, INC.

59 Greenhill St., West Warwick, RI 02893 (401) 353-3420 TOXICOLOGICAL EVALUATION AND CHEMICAL ANALYSES OF EFFLUENT: NPDES Permit # MA0100633 Stormwater 2018 Sample

> Prepared For: Lowell Regional Wastewater 451 First Street Boulevard Lowell, MA 01854

> > June 27, 2018

By
New England Testing Laboratory, Inc.
59 Greenhill Street
West Warwick, RI 02893

NETLAB CASE NUMBER: 8F04053

GEOLECHNICAL

ENVIRONMENTA

ECOLOGICAL

Water

CONSTRUCTION MANAGEMENT

77 Batson Drive

Manchester, CT 06042

T. 860.643.9560

F. 860.646.7169

www.nebio.com

ACUTE AQUATIC TOXICITY TEST REPORT

Lowell Regional Wastewater Utilities Lowell, Massachusetts NPDES Permit: MA0100633

Test Start Date:	6/5/18	10
Test Period:	June 2018	

Report Prepared by:

New England Bioassay
A Division of GZA GeoEnvironmental, Inc.
77 Batson Drive
Manchester, CT 06042

NEB Project Number: 05.0044476.00

Report Date: _____ June 26, 2018

Report Submitted to:

New England Testing Laboratories 59 Greenhill Street West Warwick, RI02893

Sample ID: Stormwater

This report shall not be reproduced, except in its entirety, without written approval of New England Bioassay (NEB). NEB is the sole authority for authorizing edits or modifications to the data contained in this report. Test results relate only to samples analyzed. Please contact the Lab Manager, Kimberly Wills, at 860-858-3153 or kimberly.wills@gza.com if you have any questions concerning these results.

Whole Effluent Toxicity Testing Report Instruction Form

Client Name/Project: <u>NET/Lowell</u>	Test Date:	6/5/18
Sample ID: Semi-annual Stormwater		
Your results were as follows:		
Pass		
□ Fail – Please proceed according to the instructions in	n your permit.	
□ Invalid – Retesting is still required. Retest report	will be sent at a	a later date under separate cover.
□ Original Test Invalid – Valid retest performed. Bo	oth test and rete	est results are attached.
☐ Retesting will be or has been performed according of EPA-New England's species-specific, self-imple		
This is your case of dilution water to Protocols outlined in the attached copy of EPA-policy for alternate dilution water. The alternate dilution water was should be described as follows: "synthetic laborate protocols, by adding specified amounts of salts into receiving water." Writing this letter should help you	New England's lution water you tory water made deionized water	species-specific, self-implementing select for future tests for this species up according to EPA's toxicity test in order to match the hardness of our
☐ Available information is insufficient to determine who to your permit limits. Please submit a current copy of the status of future tests results and help ensure your of the status of future tests.	f your permit to t	he NEB Lab so that we can determine

Please complete the items on this list before reporting these results according to the instructions in the "Monitoring and Reporting" Section of your permit.

- Please complete, sign and date the upper portion of the "Whole Effluent Toxicity Test Report Certification" page which is the page directly following this page.
- Fill in the Sample Type and Sample Method (upper right) and the Permit Limits (lower left) on the New England Bioassay, Inc.-EPA Toxicity Test Summary Sheet(s) if they are incomplete.
- Fill in any missing information on the NEB Chain-of-Custody documents. This includes ensuring
 that the following information is recorded: Sampler's name and title, Facility name and address,
 Sample collection methods, Sample collection start and end dates and times, Types of sample,
 Chlorination status of samples upon shipment to NEB, Site description and Sample collection
 procedures.
- Monitoring results should be summarized on your monthly Discharge Monitoring Report Form.
- Signed and dated originals of this report must be submitted to the State (and Federal) Agencies specified in the "Monitoring and Reporting" section of your permit.

Questions? Please contact the Lab Manager, Kim Wills, at (860) 643-9560 or kimberly.wills@gza.com.

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION (Permittee)

I certify under penalty of law that this document and all ATTACHMENTS were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on		
	[Date]	[Authorized Signature]
		[Print or Type Name and Title]
		[Print or Type the Permittee's Name]
		[Print or Type the NPDES Permit No.]

Since the WET test and report check is complicated, the New England Bioassay Aquatic Toxicity Laboratory has certified the validity of the WET test data in the section below. Please note that this does not relieve the permittee from its responsibility to sign and certify the report under 40 C.F.R. S 122.41(k).

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION (Bioassay Laboratory)

I certify under penalty of law that this document and all ATTACHMENTS were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on

itel |

Authorized Signature]

Kim Wills, Laboratory Manager [Print or Type Name and Title]

New England Bioassay

[Print or Type Name of Bioassay Laboratory]

24. Telephone Contacts

If you have questions, please contact Joy Hilton, Water Technical Unit, at (617) 918-1877 or David McDonald, Ecosystem Assessment Unit, at (617) 918-8609.

NEW ENGLAND BIOASSAY, A DIVISION OF GZA EPA TEST SUMMARY SHEET

Facility Name: Lowel	IRWWU		Test Start Date:	6/5/18
NPDES Permit Numbe	r: MA010	0633	Outfall Number:	
			× =	A
<u>Test Type</u>	Test Species		ample Type	Sample Method
<u>X</u> Acute	_ Fathead Minn		Prechlorinated	XGrab
Chronic	X Ceriodaphnia	X	Dechlorinated	_ Composite
Modified	Daphnia Pule	x	Chlorine Spiked in Lab	Flowthru
(chronic reporting	Mysid Shrimp		Chlorinated on site	Other
acute values)	_ Sheepshead		Unchlorinated	_ outer
24hr screening	_ Menidia		Chemormated	
_ 24m screening	The state of the s			
	_Sea Urchin			
	_ Champia			
	_ Selenastrum			
Dilution Water				
receiving water colle	cted at a point up	ostream of or a	away from the discharge,	free from toxicity
or other source	s of contamination	n; (Receiving	water name:	
_ alternate surface wat	er of known qual	ity and a hard	ness, etc. to generally ref	lect the
characteristics	of the receiving v	water; (Surface	e water name:	
X synthetic water prep	ared using either	Millipore Mi	ll-Q or equivalent deioniz	zed water and
			ombined with mineral wa	
or artificial sea salts				,
_ deionized water and				
other		, 01		
_ outer		-		
ECC	(-). (14/10			
Effluent sampling date	(S): <u>6/4/18</u>	→ 0.2		
Effluent concentrations	tostad (in0/)	0 625 125	25 50 100	
Effluent concentrations	1 1	0 6.25 12.5	23 30 100	
* Permit limit of	concentration:	$\geq 100\%$		
Was afflyant salinity as	liveted9 No	If was to who	st volvo? NI/A most	
Was effluent salinity ac With sea salts? N/A				
			ustment (%): <u>0</u> 6.25 12	5 25 50 100
Actual efficient concent	ialions lested and	er samming aug	asanent (70). <u>0</u> <u>0.23</u> <u>12</u>	.5 25 50 100
Reference Toxicant test	t date: 6/4/18			
Reference Toxicalities	date. 0/4/18			
	Test	Acceptability	Criteria	
	rest	песершонну	Citicita	
Mean Control Survival	: N/A	Mea	Control Reproduction:	N/A
Mean Diluent Survival:			n Diluent Reproduction:	
Mean Control Weight:			n Control Cell Count:	
Mean Diluent Weight:			Diluent Cell Count:	
Mean Diruent weight.	IN/A	Ivical	i Diluciii Celi Count.	IN/A
Limita			Dogulta	
Limits		1.050	Results	
$LC50 \geq 100\%$	0	LC50	>100%	
		Upper Value	±∞	
		Lower Value		
		Data Analysi		
		Method Used	Graphical Graphical	_
A-NOEC N/A		A-NOEC	100%	
C-NOEC N/A		C-NOEC		
11/11		LOEC		
IC25 N/A		IC25		
$\begin{array}{c} IC23 & \underline{IC50} \\ IC50 & \underline{N/A} \end{array}$		IC50		
ICJU IN/A		1030	(

CERIODAPHNIA DUBIA AQUATIC TOXICITY TEST REPORT

Test Reference Manual: EPA 821-R-02-012, "Methods for Measuring the Acute Toxicity of

Effluents and Receiving Waters to Freshwater Organisms and

Marine Organisms", Fifth Edition

Test Method: Ceriodaphnia dubia Acute Toxicity Test – Method 2002.0

Test Type: Acute Static Non-Renewal Freshwater Test

Temperature: $25 \pm 1^{\circ}$ C

Light Quality: Ambient Laboratory Illumination

Photoperiod: 16 hours light, 8 hours dark

Test Chamber Size: 30 mL

Test Solution Volume: Minimum 25 mL

Age of Test Organisms: 1-24 hours (neonates)

Number of Daphnids

Per Test Chamber: 5

Number of Replicate Test

Chambers Per Treatment: 4

Total Number of Daphnids

Per Test Concentration: 20

Feeding Regime: Fed YCT and *Selenastrum* while holding prior to initiating test as

per manual.

Aeration: None

<u>Dilution Water</u>: NEB Lab Synthetic Soft Water (hardness <u>40 to 48 mg/L)</u>

Effluent Concentrations: 0%, 6.25%, 12.5%, 25%, 50% and 100% effluent

Test Duration: 48 hours

Effect measured: Mortality – no movement of body/appendages on gentle prodding.

<u>Test Acceptability:</u> $\geq 90\%$ survival of test organisms in control solution Yes \underline{X} No_

Sampling Requirements: Samples first used within 36 hours of collection $Yes \underline{X}$ No_

Sample Volume Required: Minimum 1 liter

Test Organism Source: NEB

<u>Test Acceptability Criteria</u>: Mean Alternate Water Control Survival = <u>N/A</u>

Mean Dilution Water Control Survival = 100%

Test Results:		Limits	Results	Status
	48-hour LC50 Upper Value Lower Value Data Analysis Method U A-NOEC	≥ 100% Ised	$>100\%$ $\pm \infty$ 100% Graphic. 100%	Pass <u>X</u> Fail _
Reference Toxicant Data:	Date: Toxicant: Dilution Water: Source: 48-hour LC50: In Acceptable Ran	Sodiu NEB I New E	m Chloride Lab Synthetic England Bioas 9 g/L X No	say
Dechlorination Procedures	: Chlorine is measured us	sing 4500 CL-	G DPD Color	imetric Method.
X Dechlorination was not rec	quired			
Sample was dechlorinated be Since dechlorination of the ewith sodium thiosulfate was dechlorinated sample.	ffluent was necessary, a t	hiosulfate cont	rol of diluent	water spiked
Chlorine Measurement was filtered sample.				-
_ Total Residual Chlorine wa Additional Notes or Other	•		as found to b	e mg/L.
				,

NEW ENGLAND BIOASSAY ACUTE TOXICITY DATA FORM COVER SHEET FOR LC50 TESTS

CLIENT: New England Testing Laboratory ADDRESS: 59 Greenhill Street West Warwick, RI 02893 SAMPLE TYPE: Lowell RWU Stormwater	-	C.dubia TEST ID# COC# PROJECT#	C38-2299	
DILUTION WATER: Soft Reconstituted Freshwater	-			
Sample Date(s): 6/4/18	_ Date Received:	5/4	/18	
	INVERTEBRATES			
NEB LOTA AGE TEST SOLUTION VOLUME (mls NO. ORGANISMS PER TEST CHAMBER NO. ORGANISMS PER CONCENTRATION				
NO. ORGANISMS PER CONTROI	20			
LABORATORY CONTROL WATER:		Hardness mg/L CaCO ₃	Alkalinity mg/L CaCO ₃	
ARTIFICIAL FW: NEB BATCH #	C38-S012	46	35	
	DATE	TIME		
TEST START	: 6/5/18	1605		
TEST END	: 6/7/18	1610		
RESULTS OF	Ceriodaphnia dubia	LC50 TEST		
	,			
METHOD	LC50 (%)	95% Confidence Limits		
BINOMIAL/GRAPHICAL	>100%	100%±∞		
PROBIT				
SPEARMAN KARBER				
NOAEL	100%			
NOEC: NO OBSERVABLE EFFECT CONCENTRAT	ΓΙΟΝ			
Comments:				
REVIEWD BY:	M	DATE:	Ce 24	(8

NEW ENGLAND BIOASSAY Toxicity Test Data Sheet

NEB Test #:	18-760	Test Organism:	Ceriod	a	
Project #:	05.0044476.00	Organism Age:	< ;	24 hours	
Facility Name:	Lowell RWU Stormwater	Test Duration:	48	(hours)	
Date Sampled:	6/4/18	Beginning Date:	6/5/18	Time:	1605
Date Received:	5/4/18	Dilution Water Sour	ce:	SRCF	
Sample ID:	Stormwater	Dilution Hardness:	46	ppm as	CaCO ₃

Effluent Conc. %	,	lumber o Survivino Organism	3		Dissolved Oxygen (mg/L)		Te	emperatu (°C)	ire		рН	
Initials	KW	СВ	TBP	CW	СВ	ко	CW	СВ	ко	CW	СВ	ко
	0	24	48	0	24	48	0	24	48	0	24	48
Diluent A	5	5	5	8.1	8.2	8.5	24.3	24.0	24.8	7.7	7.7	7.8
Diluent B	5	5	5			8.4			24.8			7.8
Diluent C	5	5	5			8.3			25.3			7.8
Diluent D	5	5	5			8.3			25.3			7.7
6.25 A	5	5	5	8.2	8.2	8.2	24.4	24.0	25.2	7.6	7.6	7.8
6.25 B	5	5	5			8.2			25.0			7.7
6.25 C	5	5	5			8.2			25.1			7.7
6.25 D	5	5	5			8.1			25.2			7.7
12.5 A	5	5	5	8.0	8.1	8.1	24.4	24.0	24.9	7.5	7.6	7.7
12.5 B	5	5	5			7.9			24.9			7.7
12.5 C	5	5	5			7.8			25.0			7.7
12.5 D	5	5	5			7.7			24.9			7.6
25 A	5	5	5	7.7	7.6	7.6	24.3	24.0	24.8	7.5	7.6	7.6
25 B	5	5	5			7.2			24.9			7.5
25 C	5	5	5			7.2			24.9			7.5
25 D	5	5	5			7.1			24.9			7.5
50 A	5	5	5	7.6	6.9	7.0	24.3	24.0	24.7	7.3	7.5	7.4
50 B	5	5	5			6.1			24.9			7.3
50 C	5	5	5			5.8			24.9			7.3
50 D	5	5	5			5.8			24.8			7.3

LC50	Confidence Interval	A-NOEC	Computational Method	
>100%	100%±∞	100%	Graphical	

NEW ENGLAND BIOASSAY Toxicity Test Data Sheet

NEB Test #:	18-760	Test Organism:	Ceriod	aphnia dubia	}
Project #:	05.0044476.00	Organism Age:	< 24 hours		
Facility Name:	Lowell RWU Stormwater	Test Duration:	48	(hours)	
Date Sampled:	6/4/18	Beginning Date:	6/5/18	Time:	1605
Date Received:	5/4/18	Dilution Water So	urce:	SRCF	
Sample ID:	Stormwater	Dilution Hardness;	46	ppm as (CaCO₃

Effluent Conc. %		lumber o Survivino Organism	9		Dissolved Oxygen (mg/L)		T€	emperatu (°C)	ire		рН	
Initials	KW	СВ	TBP	CW	CB	KO	CW	CB	KO	CW	СВ	KO
THE TAXABLE	0	24	48	0	24	48	0	24	48	0	24	48
100 A	5	5	5	4.7	4.4	5.6	24.2	24.0	24.8	7.1	7.5	7.3
100 B	5	5	5			5.3			24.8			7.4
100 C	5	5	5			4.9			24.8			7.4
100 D	5	5	5			4.8			24.8			7.4

LC50	Confidence Interval	A-NOEC	Computational Method
>100%	100%±∞	100%	Graphical

Report Date: Test Code/ID: 19 Jun-18 16:14 (p 1 of 2) 18-760 / 04-6574-7841

							rest				4-00/4-/04
Ceriodaphnia	48-h Acute Sur	vival Test							N	ew Englar	ıd Bioassay
Analysis ID:	10-8024-5353	End	point: 48	h Survival Ra	ate		CETI	S Version	n: CETISv1	.9.4	
Analyzed:	19 Jun-18 16:13	Ana	Iysis: No	onparametric-	Control vs T	reatments	Statu	ıs Level:	1		
Batch ID:	14-6074-7010	Tes	Type: Su	ırvival (48h)			Analy	vst:			
Start Date:	05 Jun-18 16:05			PA/821/R-02-	012 (2002)		Dilue		oft Synthetic \	Vater	
Ending Date:	07 Jun-18 16:10	Spe	cies: Ce	eriodaphnia d	ubia		Brine	e:	-		
Test Length:	48h	Tax	on: Br	anchiopoda			Sour	ce: In	-House Cultu	re	Age: <24
Sample ID:	04-5560-0650	Cod	le: 1E	327EA0A			Proje	ect:			
Sample Date:	04 Jun-18 11:00	Mat	erial: sto	ormwater			Sour	ce: Lo	well RWWU	(MA01006	33)
	04 Jun-18 15:50	CAS	(PC):				Stati	on:			
Sample Age:	29h	Clie	nt: Ne	ew England T	esting Labs						
Data Transfor	m	Alt Hyp					NOEL	LOEL	TOEL	TU	
Angular (Corre	cted)	C > T					100	>100	n/a	1	
Steel Many-Or	ne Rank Sum Te	est									
Control v	vs Conc-%		Test Stat	t Critical	Ties DF	P-Type	P-Value	Decisio	n(α:5%)		
Dilution Water	6.25		18	10	1 6	Asymp	0.8333	_	nificant Effec		
	12.5		18	10	1 6	Asymp	0.8333	_	inificant Effec		
	25		18	10	1 6	Asymp	0.8333		nificant Effec		
	50		18	10	1 6	Asymp	0.8333		nificant Effec		
	100		18	10	1 6	Asymp	0.8333	Non-Sig	nificant Effec	t	
Test Acceptab	oility Criteria	TAC L	imits								
Attribute	Test Stat	Lower	Upper	Overlap	Decision						
Control Resp	1	0.9	>>	Yes	Passes C	riteria					
ANOVA Table											
Source	Sum Squa	ares	Mean Sq	_l uare	DF	F Stat	P-Value	Decisio	n(α:5%)		
Between	0		0		5	65540	<1.0E-37	Significa	ant Effect		
Error	0		0		18						
Total	0				23						
48h Survival F	Rate Summary										
Conc-%											
COIIC /6	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Code D	Count 4	Mean 1,0000	95% LCL 1.0000	95% UCL 1.0000	Median 1.0000	Min 1.0000	Max 1.0000	Std Err 0.0000	CV%	%Effect 0.00%
0		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%
0 6,25 12.5 25		4	1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000	1.0000 1.0000	1.0000 1.0000 1.0000 1.0000	1.0000 1.0000	1.0000 1.0000	0.0000 0.0000	0.00% 0.00%	0.00% 0.00% 0.00% 0.00%
0 6.25 12.5		4 4 4	1.0000 1.0000 1.0000	1.0000 1 _. 0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000	0.0000 0.0000 0.0000	0.00% 0.00% 0.00%	0.00% 0.00% 0.00%
0 6,25 12.5 25		4 4 4 4	1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000	0.0000 0.0000 0.0000 0.0000	0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00%
0 6.25 12.5 25 50 100		4 4 4 4 4	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1 ₋ 0000 1.0000 1.0000 1.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00% 0.00%
0 6.25 12.5 25 50 100	D ected) Transford Code	4 4 4 4 4 4 med Summ	1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 ary	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0 6.25 12.5 25 50 100 Angular (Corre Conc-%	D ected) Transfori	4 4 4 4 4 4 med Summ	1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 ary Mean 1,345	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% LCL	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% UCL	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Median	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Min 1.345	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Max 1.345	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Std Err	0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0 6.25 12.5 25 50 100 Angular (Corre Conc-% 0 6.25	D ected) Transford Code	4 4 4 4 4 4 med Summ	1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 ary Mean 1,345 1,345	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% LCL 1.345 1.345	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% UCL 1.346 1.346	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Median 1.345 1.345	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Min 1.345 1.345	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Max 1.345 1.345	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Std Err 0	0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0 6.25 12.5 25 50 100 Angular (Corre Conc-%	D ected) Transford Code	4 4 4 4 4 med Summ Count	1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 ary Mean 1,345 1,345 1,345	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% LCL 1.345 1.345	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% UCL 1.346 1.346	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Median 1.345 1.345	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Min 1.345 1.345 1.345	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Max 1.345 1.345	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Std Err	0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0 6.25 12.5 25 50 100 Angular (Corre Conc-% 0 6.25 12.5 25	D ected) Transford Code	4 4 4 4 4 med Summ Count 4	1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 ary Mean 1,345 1,345 1,345	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% LCL 1.345 1.345 1.345	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% UCL 1.346 1.346 1.346	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Median 1.345 1.345 1.345	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Min 1.345 1.345 1.345	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Max 1.345 1.345 1.345	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Std Err 0	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0 6.25 12.5 25 50 100 Angular (Corre Conc-% 0 6.25 12.5	D ected) Transford Code	4 4 4 4 4 4 med Summ Count 4 4	1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 ary Mean 1,345 1,345 1,345	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% LCL 1.345 1.345	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 95% UCL 1.346 1.346	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Median 1.345 1.345	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Min 1.345 1.345 1.345	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Max 1.345 1.345	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Std Err 0	0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

CETIS™ v1.9.4.1 002-997-881-4 Analyst:_ QA:_

Ceriodaphnia 48-h Acute Survival Test

19 Jun-18 16:13

Report Date: Test Code/ID: 19 Jun-18 16:14 (p 2 of 2) 18-760 / 04-6574-7841

New England Bioassay

Analysis ID: 10-8024-5353

48h Survival Rate Endpoint: Analysis: Nonparametric-Control vs Treatments **CETIS Version:**

CETISv1.9.4 Status Level: 1

Analyzed:

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.0000	1,0000	1.0000	1.0000
6.25		1.0000	1,0000	1.0000	1.0000
12.5		1.0000	1.0000	1.0000	1.0000
25		1.0000	1.0000	1.0000	1,0000
50		1.0000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1,0000

Angular (Corrected) Transformed Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.345	1.345	1.345	1.345
6.25		1.345	1.345	1.345	1.345
12.5		1.345	1,345	1.345	1.345
25		1.345	1.345	1,345	1,345
50		1.345	1.345	1.345	1,345
100		1.345	1.345	1.345	1,345

48h Survival Rate Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	5/5	5/5	5/5	5/5
6.25		5/5	5/5	5/5	5/5
12.5		5/5	5/5	5/5	5/5
25		5/5	5/5	5/5	5/5
50		5/5	5/5	5/5	5/5
100		5/5	5/5	5/5	5/5

Graphics

Report Date: Test Code/ID: 19 Jun-18 16:14 (p 1 of 2) 18-760 / 04-6574-7841

								1621	Jouenn.		10-7007	04-05/4-/04
Ceriodaphnia	a 48-h Acute Surv	vival Test									New Englar	nd Bioassa
Analysis ID:	11-4001-4191		point:	48h Survival R					S Version:		/1.9.4	
Analyzed:	19 Jun-18 16:13	Ana	lysis:	Linear Interpol	lation (ICPIN	l)		Status	s Level:	1		
Batch ID:	14-6074-7010	Test	Type:	Survival (48h)				Analy	st:			
Start Date:	05 Jun-18 16:05	Prof	ocol:	EPA/821/R-02	-012 (2002)			Dilue	nt: Sof	t Synthetic	Water	
Ending Date:	: 07 Jun-18 16:10	Spe	cies:	Ceriodaphnia (dubia			Brine	:			
Test Length:	48h	Tax	on:	Branchiopoda				Sourc	e: In-H	House Cult	ure	Age: <2
Sample ID:	04-5560-0650	Cod	e:	1B27EA0A				Proje	ct:			
•	: 04 Jun-18 11:00		erial:	stormwater				Sourc	e: Lov	vell RWWL	J (MA01006	33)
•	: 04 Jun-18 15:50		(PC):					Statio	n:			
Sample Age:	: 29h 	Clie	nt:	New England	Testing Labs	· · · · · · · · · · · · · · · · · · ·						
Linear Interp	olation Options											
X Transform	Y Transform			Resamples	Exp 95%		lethod					
Log(X)	Linear	1600	0871	200	Yes		Two-Point	Interpo	lation			
Test Accepta	bility Criteria	TAC L	imits									
Attribute	Test Stat	Lower	Uppe	r Overlap	Decision							
Control Resp	1	0.9	>>	Yes	Passes C	riteria						
Point Estima	ites											
Level %	95% LCL	95% UCL	TU	95% LCL	. 95% UCL							
LC50 >100	0 n/a	n/a	<1	n/a	n/a							
48h Survival	Rate Summary				Calcu	ılated V	ariate(A/	В)			Isoto	nic Variate
Conc-%	Code	Count	Mean	Min	Max	Std D	ev CV	%	%Effect	A/B	Mean	%Effect
0	D	4	1.000	0 1.0000	1.0000	0.000	0.0	0%	0.0%	20/20	1	0.0%
6.25		4	1.000		1.0000	0.000			0.0%	20/20	1	0.0%
12,5		4	1.000		1.0000	0.000			0.0%	20/20	1	0.0%
25		4	1.000		1.0000	0,000			0.0%	20/20	1	0.0%
50		4	1.000		1.0000	0.000			0.0%	20/20	1	0.0%
100		4	1.000	0 1.0000	1.0000	0.000	0.0	0%	0.0%	20/20	1	0.0%
48h Survival	Rate Detail											
Conc-%	Code	Rep 1	Rep 2		Rep 4							
0	D	1.0000	1.000		1.0000							
6.25		1.0000	1.000		1.0000							
12.5		1.0000	1.000		1.0000							
25		1.0000	1.000		1.0000							
50		1.0000	1.000		1.0000							
100		1.0000	1.000	0 1.0000	1.0000							
	Rate Binomials											
Conc-%	Code	Rep 1	Rep 2		Rep 4							
0	D	5/5	5/5	5/5	5/5							
6.25		5/5	5/5	5/5	5/5							
12.5		5/5	5/5	5/5	5/5							
25 50		5/5	5/5	5/5	5/5							
50		5/5	5/5	5/5	5/5							
100		5/5	5/5	5/5	5/5							

002-997-881-4 CETIS™ v1.9.4.1

Analyst:_____ QA:____

Report Date: Test Code/ID:

19 Jun-18 16:14 (p 2 of 2) 18-760 / 04-6574-7841

Ceriodaphnia 48-h Acute Survival Test

New England Bioassay

Analysis ID:11-4001-4191Endpoint:48h Survival RateCETIS Version:CETISv1.9.4Analyzed:19 Jun-18 16:13Analysis:Linear Interpolation (ICPIN)Status Level:1

Graphics

002-997-881-4

INITIAL CHEMISTRY INFORMATION

CLIENT:	Lowell Stormwater					
PROJECT #	05.0044476.00					
DECLEDE DATE	CIAIIO					

RECIEPT DATE	6/4/18				
SAMPLE	Effluent				
COC#	C38-2299				
Temperature (°C)	8.1				
Dissolved Oxygen (mg/L)	6.4				
pH (standard units)	6.5				
Conductivity (µmhos/cm)	1,105				
Salinity (ppt)	<1				
Hardness (as mg/L CaCO3)	86				
Alkalinity (as mg/L CaCO3)	100				
TRC - DPD (mg/L)	0.057*				
INITIALS	DD				

Additio	onal notes:
	*TRC reading was <0.05 mg/L by amperometric titration.

New England Bioassay
Reference Toxicant Data: Sodium chloride (NaCl) Ceriodaphnia dubia 48-hour LC50

Test ID	Date	LC ₅₀	Mean LC ₅₀	STD	-2 STD	+2 STD	cv	CV National 75th %	CV National 90th %
16-885	7/7/2016	1.76	1.64	0.24	1.17	2.12	0.14	0.29	0.34
16-1156	8/8/2016	1.86	1.66	0.23	1.19	2.13	0.14	0.29	0.34
16-1252	9/7/2016	1.79	1.68	0.23	1,22	2.14	0.14	0.29	0.34
16-1466	10/5/2016	1.39	1.66	0.23	1.19	2.13	0.14	0.29	0.34
16-1586	11/1/2016	1.80	1.66	0.23	1.19	2.12	0.14	0.29	0.34
16-1730	12/1/2016	1.73	1.66	0.23	1.20	2.13	0.14	0.29	0.34
17-5	1/3/2017	2.14	1.69	0.25	1.19	2.19	0.15	0.29	0.34
17-147	2/1/2017	1.97	1.71	0.25	1.21	2.21	0.15	0.29	0.34
17-274	3/1/2017	1.19	1.69	0.27	1,15	2.24	0.16	0.29	0.34
17-475	4/4/2017	1.63	1.69	0.27	1.15	2.23	0.16	0.29	0.34
17-695	5/10/2017	1.32	1.69	0.28	1,13	2.24	0.16	0.29	0.34
17-772	6/1/2017	1.35	1,68	0.28	1,13	2.24	0.17	0.29	0.34
17-968	7/5/2017	1.55	1.67	0.28	1.12	2.23	0.17	0.29	0.34
17-1140	8/1/2017	1.16	1.64	0.28	1.07	2.20	0.17	0.29	0.34
17-1325	9/5/2017	1.67	1.62	0.27	1.08	2.16	0.17	0.29	0.34
17-1521	10/3/2017	1.70	1.62	0.27	1.08	2.16	0.17	0.29	0.34
17-1689	11/1/2017	1.23	1.60	0.28	1.04	2.16	0.18	0.29	0.34
17-1828	12/4/2017	1.52	1.60	0.28	1.05	2.16	0.17	0.29	0.34
18-5	1/2/2018	2.24	1.64	0.30	1.03	2.24	0.18	0.29	0.34
18-179	2/1/2018	1.71	1.64	0.30	1.04	2.25	0.18	0.29	0.34
18-290	3/1/2018	1.50	1.63	0.30	1.03	2.23	0.18	0.29	0.34
18-465	4/3/2018	1.69	1.64	0.30	1.04	2.24	0.18	0.29	0.34
18-653	5/8/2018	2.06	1.64	0.30	1.04	2.23	0.18	0.29	0.34
18-749	6/4/2018	1.59	1.65	0.29	1.07	2.23	0.18	0.29	0.34

Results:

Sample: Semi Annual Whole Eff

8F04053-01 (Water)

General Chemistry

	Result	Reporting	Units	Date
		Limit		Analyzed
Ammonia	11.8	0.5	mg/L	06/08/18
Kjeldahl Nitrogen	12.3	1.0	mg/L	06/06/18
Nitrate and Nitrite as N	4.82	0.15	mg/L	06/06/18
Total Dissolved Solids	524	10	mg/L	06/06/18
Total Organic Carbon	14.6	1.0	mg/L	06/08/18
Total Phosphorous	3.11	0.10	mg/L	06/05/18
Total solids (TS)	644	10	mg/L	06/05/18
Total Suspended Solids	61	4	mg/L	06/07/18

Total Metals

	Result	Reporting Limit	Units	Date Analyzed
Calcium	27.8	0.01	mg/L	06/06/18
Magnesium	5.01	0.01	mg/L	06/06/18
Cadmium	0.0001	0.0001	mg/L	06/07/18
Lead	0.002	0.0002	mg/L	06/08/18
Aluminum	0.283	0.012	mg/L	06/06/18
Copper	0.019	0.005	mg/L	06/06/18
Nickel	0.005	0.001	mg/L	06/06/18
Zinc	0.088	0.005	mg/L	06/06/18
Total Hardness	90.0	0.0312	mg/L	06/06/18

NEW ENGLAND BIOASSAY CHAIN-OF-CUSTODY				
EFFLUENT	RECEIVING WATER			
Sampler: JIN BOK MCGONAN	Sampler:			
Title: CHEM 15T	Title:			
Facility: Lowell Regional Wastewater Utilities	Facility: Lowell Regional Wastewater Utilities			
Sampling Method: X Composite	Sampling Method: X Grab			
Sample ID:	Sample ID: Merrimack River			
Start Date: Time:	Date Collected:			
End Date: Time:	Time Collected:			
	ω.			
Sampling Method: Grab (for pH and TRC only_				
Date Collected: 6-4-018 //= Oct Am				
Time Collected:				
Sample Type: Prechlorinated				
Sample Type: Prechlorinated X Dechlorinated	Received			
Unchlorinated Chlorinated	ON ICE			
Cinormated				
Receiving Water Sampling Location and Procedures: Merrimack River upstream of the plant discharge at the Hunts Fall Bridge, (Rt.38)				
Requested Analysis: X Chronic and modified acute				
Sa	mple Shipment			
Method of Shipment: New England Testing Labs				
Relinquished By:	Date: 6-6-14 Time: 1200 bry			
Received By:	Date: 60118 Time: 1300			
Relinquished By:	Date: 6/4/18 Time: 1450			
Received By:	Date: 6-4-18 Time: 1450			
Relinquished By:	Date: 6-4-18 Time: 1550			
Received By:	Date: 6-4-18 Time: 1550			
FOR NEB USE ONLY				
* Please return all ice packs NEB has provided to insure accurate temperature upon receipt to the NEB laboratory *				
Temperature of Effluent Upon Receipt at Lab: 8.1 °C	Temperature of Receiving Water Upon Receipt at Lab: <u>°C</u>			
Effluent COC#	Receiving Water COC#			

IF THIS COOLER IS MISPLACED OR THE LABEL IS LOST, PLEASE SHIP TO: KIM WILLS, NEW ENGLAND BIOASSAY, 77 BATSON DRIVE, MANCHESTER CT 06042

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 8F04053 Client Project: Stormwater Bioassay 2X Annual

Report Date: 27-June-2018

Prepared for:

Tom Kawa Lowell Regional Wastewater 451 First St. Blvd Lowell, MA 01852

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893

rich.warila@newenglandtesting.com

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 06/04/18. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 8F04053. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled
8F04053-01	Semi Annual Whole Eff	Water	06/04/2018

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

Semi Annual Whole Eff

Ammonia	SM4500-NH3-D
Magnesium	SM3120-B
Cadmium	EPA 200.9
Lead	SM3113-B
Aluminum	EPA 200.7
Copper	EPA 200.7
Calcium	SM3120-B
Zinc	EPA 200.7
Total Suspended Solids	SM2540-D
Total Kjeldahl Nitrogen	SM4500NH3-D
Nitrate and Nitrite as N	4500-N03-E
Total Dissolved Solids	SM2540-C
Total Organic Carbon	SM5310-C
Total Phosphorous	SM4500-P-E
Total Solids	SM2540-C
Nickel	EPA 200.7

The analytical methods provided are documented in the following references:

Manual of Methods for Chemical Analysis of Water and Water Wastes, EPA-600/4-79-020 (Revised 1983), USEPA/EMSL.

Standard Methods for the Examination of Water and Wastewater, 20th Edition, 1998, APHA, AWWA-WPCF.

40 CFR 136, Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, Office of Federal Register National Archives and Records Administration.

Results:

Sample: Semi Annual Whole Eff

8F04053-01 (Water)

General Chemistry

	Result	Reporting	Units	Date
		Limit		Analyzed
Ammonia	11.8	0.5	mg/L	06/08/18
Kjeldahl Nitrogen	12.3	1.0	mg/L	06/06/18
Nitrate and Nitrite as N	4.82	0.15	mg/L	06/06/18
Total Dissolved Solids	524	10	mg/L	06/06/18
Total Organic Carbon	14.6	1.0	mg/L	06/08/18
Total Phosphorous	3.11	0.10	mg/L	06/05/18
Total solids (TS)	644	10	mg/L	06/05/18
Total Suspended Solids	61	4	mg/L	06/07/18

Total Metals

	Result	Reporting	Units	Date
		Limit		Analyzed
Calcium	27.8	0.01	mg/L	06/06/18
Magnesium	5.01	0.01	mg/L	06/06/18
Cadmium	0.0001	0.0001	mg/L	06/07/18
Lead	0.002	0.0002	mg/L	06/08/18
Aluminum	0.283	0.012	mg/L	06/06/18
Copper	0.019	0.005	mg/L	06/06/18
Nickel	0.005	0.001	mg/L	06/06/18
Zinc	0.088	0.005	mg/L	06/06/18
Total Hardness	90.0	0.0312	mg/L	06/06/18

Case Narrative

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

All samples were analyzed in accordance with 40 CFR 136 approved methodologies.

PROJ. NO.

X, INC.

Kannya 3 No CHAIN OF CUSTODY RECORD

E

9

シュ ATTACHED DOCAMENTATION NITRITE & NITRATE NITROGEN KJE LÜTHU NITROGEN PER NITIROGEN TEST Prios priopus NPD甲 REMARKS Turnaround (Business Days). Special Instructions: List Specific Detection Limit Requirements: TOXICITY 2) AMMONIA PER T5.19-6 To 14c Ske Laboratory Remarks: Temp. received: ____Cooled ___ 4 4 B H2SCH マシジュ HNOS H> 504 **₽₩₩₩₩₩₩₩₩₩₩** SEMI-ANNUAL" WET WEATHER" W.E.T. CONTAINERS NUTS • Š P Received for Laboratory by: (Signature) BLACKS. 0-xmc ۵0--Received by: (Sig <u>3</u> **4**なりほうしゃ MA OBS WET WEATHER NUTS Tokicity CLENT LOWELL REGIONAL WW CATILLY WIET MOGITHEN DIMPOLE EFF --1/80 SAMPLE I.D. 1st ST. (PTZ110) LOWELL. KAWA Date/Time PROJECT NAME/LOCATION ZAMONT യ∝≺മ 1200/1 ೧೦≥೯ Sampled by: (Signature) 8 TIME INVOICE TO: 1418 J-1/2 DATE

35 /